Karamba3D v2
English 英文
English 英文
  • Welcome to Karamba3D
  • New in Karamba3D 2.2.0
  • See Scripting Guide
  • See Manual 1.3.3
  • 1: Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2: Getting Started
    • 2 Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 Settings
      • 3.0.2 License
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set 🔷
      • 3.1.14: Orientate Element
      • 3.1.15: Dispatch Elements
      • 3.1.16: Select Elements
      • 3.1.17: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section 🔷
      • 3.3.5: Eccentricity on Beam and Cross Section 🔷
      • 3.3.6: Modify Cross Section 🔷
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints 🔷
      • 3.4.2: Beam-Joint Agent 🔷
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material 🔷
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII 🔷
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes 🔷
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section 🔷
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement 🔷
      • 3.6.12: Tension/Compression Eliminator 🔷
    • 3.7: Results
      • 3.7.1: ModelView
      • 3.7.2: Deformation-Energy
      • 3.7.3: Element Query
      • 3.7.4: Nodal Displacements
      • 3.7.5: Principal Strains Approximation
      • 3.7.6: Reaction Forces 🔷
      • 3.7.7: Utilization of Elements 🔷
        • Examples
      • 3.7.8: BeamView
      • 3.7.9: Beam Displacements 🔷
      • 3.7.10: Beam Forces
      • 3.7.11: Node Forces
      • 3.7.12: ShellView
      • 3.7.13: Line Results on Shells
      • 3.7.14: Result Vectors on Shells
      • 3.7.15: Shell Forces
      • 3.7.16 Results at Shell Sections
    • 3.8: Export 🔷
      • 3.8.1: Export Model to DStV 🔷
      • 3.8.2 Json / Bson Export and Import
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation 🔷
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting 🔷
      • 3.9.13: Mapper 🔷
      • 3.9.14: Interpolate Shape 🔷
      • 3.9.15: Connecting Beams with Stitches 🔷
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. Appendix
  2. A.2: Background information

A.2.5: Natural Vibrations, Eigen Modes and Buckling

PreviousA.2.4: Hints on Reducing Computation TimeNextA.2.6: Approach Used for Cross Section Optimization

Last updated 4 years ago

Was this helpful?

The Eigen-modes of a structure describe the shapes to which it can be deformed most easily in ascending order. Due to this the “Eigen Modes”-component can be used to detect kinematic modes.

An Eigen-mode x⃗\vec{x}x is the solution to the matrix-equation C~⋅x⃗=λ⋅x⃗\utilde{C} \cdot \vec{x} = \lambda \cdot \vec{x}C​⋅x=λ⋅x which is called the special eigen-value problem. Where C~\utilde{C}C​ is a matrix, x⃗\vec{x}x a vector and λ\lambdaλ a-scalar (that is a number) called eigenvalue. The whole thing does not necessarily involve structures. Eigen-modes and eigenvalues are intrinsic properties of a matrix. When applied to structures then C~\utilde{C}C​ stands for the stiffness-matrix whose number of rows and columns corresponds to the number of degrees of freedom of the structural system. x⃗\vec{x}x is an eigen-mode as can be computed with Karamba3D.

Vibration modes x⃗\vec{x}x of structures result from the solution of a general Eigenvalue problem. This has the form C~⋅x⃗=ω2⋅M~⋅x⃗\utilde{C} \cdot \vec{x} = \omega^2 \cdot \utilde{M} \cdot \vec{x}C​⋅x=ω2⋅M​⋅x. In a structural contextM~\utilde{M}M​is the mass-matrix which represents the effect of inertia. The scalarω\omegaωcan be used to compute the eigenfrequencyfffof the dynamic system from the equationf=ω/2πf = \omega / 2\pif=ω/2π. In the context of structural dynamics eigen-modes are also called normal-modes or vibration-modes.

The “Buckling Modes”-component calculates the factor with which the normal forces NIIN^{II}NII need to be multiplied in order to cause structural instability. The buckling factors are the eigenvalues of the general Eigenvalue problem C~⋅x⃗+λ2⋅CG~⋅x⃗=0\utilde{C} \cdot \vec{x} + \lambda^2 \cdot \utilde{C_{G}} \cdot \vec{x} = 0C​⋅x+λ2⋅CG​​⋅x=0. Here C~\utilde{C}C​ is the elastic stiffness matrix and CG~\utilde{C_{G}}CG​​ the geometric stiffness matrix. The latter captures the influence of normal forces NIIN^{II}NII on a structure’s deformation response.