Karamba3D v2
English 英文
English 英文
  • Welcome to Karamba3D
  • New in Karamba3D 2.2.0
  • See Scripting Guide
  • See Manual 1.3.3
  • 1: Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2: Getting Started
    • 2 Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 Settings
      • 3.0.2 License
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set 🔷
      • 3.1.14: Orientate Element
      • 3.1.15: Dispatch Elements
      • 3.1.16: Select Elements
      • 3.1.17: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section 🔷
      • 3.3.5: Eccentricity on Beam and Cross Section 🔷
      • 3.3.6: Modify Cross Section 🔷
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints 🔷
      • 3.4.2: Beam-Joint Agent 🔷
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material 🔷
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII 🔷
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes 🔷
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section 🔷
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement 🔷
      • 3.6.12: Tension/Compression Eliminator 🔷
    • 3.7: Results
      • 3.7.1: ModelView
      • 3.7.2: Deformation-Energy
      • 3.7.3: Element Query
      • 3.7.4: Nodal Displacements
      • 3.7.5: Principal Strains Approximation
      • 3.7.6: Reaction Forces 🔷
      • 3.7.7: Utilization of Elements 🔷
        • Examples
      • 3.7.8: BeamView
      • 3.7.9: Beam Displacements 🔷
      • 3.7.10: Beam Forces
      • 3.7.11: Node Forces
      • 3.7.12: ShellView
      • 3.7.13: Line Results on Shells
      • 3.7.14: Result Vectors on Shells
      • 3.7.15: Shell Forces
      • 3.7.16 Results at Shell Sections
    • 3.8: Export 🔷
      • 3.8.1: Export Model to DStV 🔷
      • 3.8.2 Json / Bson Export and Import
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation 🔷
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting 🔷
      • 3.9.13: Mapper 🔷
      • 3.9.14: Interpolate Shape 🔷
      • 3.9.15: Connecting Beams with Stitches 🔷
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page
  • Default Settings
  • Graphical User Interface

Was this helpful?

  1. 2: Getting Started
  2. 2 Getting Started

2.1: Karamba3D Entities

Grasshopper (GH) is an object oriented, visual scripting environment. It provides items like points, curves, surfaces, . . . for geometric computing. The full range of geometric items can be inspected in the subcategory “Geometry” of the toolbar section “Params”. Karamba3D adds seven entities for building structural models:

Entity

Typology

Model

contains all the information related to a structure

Element

can be a beam, truss, shell or spring

Element Set

groups together elements in a given order, makes them accessible under a common name

Joint

defines the connectivity between neighboring elements

Load

external action which is imposed on the structure

Cross-section

defines a structural element’s geometry in section

Material

provides information regarding the physical behavior of what a cross section is made of

Support

defines how a structure connects to the ground.

Karamba3D objects behave like GH entities.

  • They can be stored in containers (see the “Params” subcategory of the “Karamba3D” toolbar).

  • When converted into text by plugging them into a panel they provide textual output regarding their fundamental properties.

Default Settings

In order to build a structural model not all of the above entities need to be present. Karamba3D assumes default settings for materials and cross sections:

  • If no material is given, Karamba3D chooses steel (S235 according to EC3 withfyk=23.5kN/cm2f_{yk} = 23.5 kN/cm^2fyk​=23.5kN/cm2) for all cross sections.

  • For beams the default is a circular hollow cross sections (CHS) with an outer diameter of114.4mm114.4mm114.4mmand a wall thickness of 4mm4mm4mm. The default thickness of shells amounts to 10mm10mm10mm.

Graphical User Interface

Some Karamba3D components come with graphical user interface components like radio-buttons, drop-down lists and sub-menus.

Sliders on Karamba3D components have a preset number-range. Double-click on the knob to change the precision and range to your specific need.

In some cases the user can select between different options at a component input (e.g. the Load-Case at a result component, or the degrees of freedom at a support-component). To select these options via ValueList-components right-click on the Karamba3D-component and select "Expand ValueLists" from the context menu or plug a ValueList into the corresponding input-plug. The selection of dynamic content that depends on the upstream -model (e.g. selection of load-cases) works only after the component executed at least once. So one needs to connect the mandatory input-plugs before expanding dynamic value-lists.

The ModelView-, BeamView- and ShellView-components provide a short-cut for selecting color-ranges for result display: Right-click on the components and select 'Colors' from the context menu.

Previous2 Getting StartedNext2.2: Setting up a Structural Analysis

Last updated 3 years ago

Was this helpful?