Karamba3D v2
English 英文
English 英文
  • Welcome to Karamba3D
  • New in Karamba3D 2.2.0
  • See Scripting Guide
  • See Manual 1.3.3
  • 1: Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2: Getting Started
    • 2 Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 Settings
      • 3.0.2 License
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set đź”·
      • 3.1.14: Orientate Element
      • 3.1.15: Dispatch Elements
      • 3.1.16: Select Elements
      • 3.1.17: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section đź”·
      • 3.3.5: Eccentricity on Beam and Cross Section đź”·
      • 3.3.6: Modify Cross Section đź”·
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints đź”·
      • 3.4.2: Beam-Joint Agent đź”·
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material đź”·
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII đź”·
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes đź”·
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section đź”·
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement đź”·
      • 3.6.12: Tension/Compression Eliminator đź”·
    • 3.7: Results
      • 3.7.1: ModelView
      • 3.7.2: Deformation-Energy
      • 3.7.3: Element Query
      • 3.7.4: Nodal Displacements
      • 3.7.5: Principal Strains Approximation
      • 3.7.6: Reaction Forces đź”·
      • 3.7.7: Utilization of Elements đź”·
        • Examples
      • 3.7.8: BeamView
      • 3.7.9: Beam Displacements đź”·
      • 3.7.10: Beam Forces
      • 3.7.11: Node Forces
      • 3.7.12: ShellView
      • 3.7.13: Line Results on Shells
      • 3.7.14: Result Vectors on Shells
      • 3.7.15: Shell Forces
      • 3.7.16 Results at Shell Sections
    • 3.8: Export đź”·
      • 3.8.1: Export Model to DStV đź”·
      • 3.8.2 Json / Bson Export and Import
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation đź”·
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting đź”·
      • 3.9.13: Mapper đź”·
      • 3.9.14: Interpolate Shape đź”·
      • 3.9.15: Connecting Beams with Stitches đź”·
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. 3: In Depth Component Reference
  2. 3.9 Utilities

3.9.12: Element Felting đź”·

Previous3.9.11: Simplify ModelNext3.9.13: Mapper đź”·

Last updated 3 years ago

Was this helpful?

Sometimes one has several (potentially) structural elements neatly positioned in space but no connections between them. The “Element Felting”-component helps out in such situations by generating connections between neighboring elements (see fig. 3.9.12.1). The component's behavior can be con- trolled with these input-plugs:

"Model"

Model to be dealt with

"LimDist"

The “Element Felting”-component calculates the shortest distance between each pair of elements in the model. If this distance is less than “LimDist” meters a connection will be generated.

"SnapLen"

In case that a connection is to be generated the participating elements need to be divided and a connection element introduced. If any of the thus arising elements has a length of less than “SnapLen” meter then the element will be removed and its endpoints snap to the original end-point.

"MaxELen"

You can set here a length limit for elements that shall take part in the felting-process. All elements longer than the value of “MaxELen” meter will be ignored.

"StartInd"

Lets you limit the felting process to elements with an index larger than or equal “StartInd”.

"MaxNCon"

This sets the maximum number of new connections to be generated. If this value is reached then felting simply stops.

"Beam Id"

The beam identifier provided here will be attributed to the connections generated by the component. Cross sections, materials and eccentricities previously defined for this beam identifier apply to these. In case no identifier is given neighboring elements snap to the point in the middle of their shortest connection line.

The felting algorithm proceeds from the first element to the last, always testing against all currently existing elements. Therefore newly generated connection elements may be the source of further connections.

41KB
Element_Felting_Truss.gh
31KB
Element_Felting_Two_Beams.gh
35KB
Stitches_Element_Felting.gh
Fig. 3.9.12.1: Elements “A” & “B” of the original model are connected resulting in additional element “C”.