Karamba3D v2
English 英文
English 英文
  • Welcome to Karamba3D
  • New in Karamba3D 2.2.0
  • See Scripting Guide
  • See Manual 1.3.3
  • 1: Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2: Getting Started
    • 2 Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 Settings
      • 3.0.2 License
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set 🔷
      • 3.1.14: Orientate Element
      • 3.1.15: Dispatch Elements
      • 3.1.16: Select Elements
      • 3.1.17: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section 🔷
      • 3.3.5: Eccentricity on Beam and Cross Section 🔷
      • 3.3.6: Modify Cross Section 🔷
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints 🔷
      • 3.4.2: Beam-Joint Agent 🔷
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material 🔷
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII 🔷
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes 🔷
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section 🔷
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement 🔷
      • 3.6.12: Tension/Compression Eliminator 🔷
    • 3.7: Results
      • 3.7.1: ModelView
      • 3.7.2: Deformation-Energy
      • 3.7.3: Element Query
      • 3.7.4: Nodal Displacements
      • 3.7.5: Principal Strains Approximation
      • 3.7.6: Reaction Forces 🔷
      • 3.7.7: Utilization of Elements 🔷
        • Examples
      • 3.7.8: BeamView
      • 3.7.9: Beam Displacements 🔷
      • 3.7.10: Beam Forces
      • 3.7.11: Node Forces
      • 3.7.12: ShellView
      • 3.7.13: Line Results on Shells
      • 3.7.14: Result Vectors on Shells
      • 3.7.15: Shell Forces
      • 3.7.16 Results at Shell Sections
    • 3.8: Export 🔷
      • 3.8.1: Export Model to DStV 🔷
      • 3.8.2 Json / Bson Export and Import
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation 🔷
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting 🔷
      • 3.9.13: Mapper 🔷
      • 3.9.14: Interpolate Shape 🔷
      • 3.9.15: Connecting Beams with Stitches 🔷
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. 3: In Depth Component Reference
  2. 3.4: Joint

3.4.1: Beam-Joints 🔷

Previous3.4: JointNext3.4.2: Beam-Joint Agent 🔷

Last updated 3 years ago

Was this helpful?

A structure usually consists of a large number of load bearing elements that need to be joined together. When rigidly connected, such a joint has to transfer three section forces (one axial force, two shear forces) and three moments (one torsional and two bending moments). Depending on the type of material such full connections are sometimes (e.g. for wood) hard to achieve, costly and bulky. A solution to this problem consists in introducing hinges.

Fig. 3.4.1.1 shows a beam under dead weight with fully fixed boundary conditions at both end-points. At the right end the joint (which is in fact no joint any more) completely dissociates the beam from the support there. The result is a cantilever.

The symbols for joints resemble that for supports: pink arrows represent translational joints, white circles symbolize moment hinges. In Karamba3D joints are realized by inserting a spring between the endpoint of a beam and the node to which it connects. This necessitates sufficient support conditions at the actual nodes to prevent them from freely moving around. See for example the right node in fig. 3.4.1.1 which has to be fully fixed – otherwise the system would be kinematic.

The “Beam-Joint”-component allows to define hinges at a beam’s starting- and end-node. A list of beam-identifiers lets you select the beams where the joint definition shall apply. Filled circles mean that the corresponding degrees of freedom represent joints. “T” stands for translation, “R” for rotation. Feed the resulting cross-section into the “Joint”-plug of the “Assemble”-component. The orientation of the axes of the joints corresponds to the local coordinate system of the beam they apply to.

Sometimes the stiffness of connections lies between fully fixed and zero. With the input-plugs “Ct-start” and “Cr-start” it is possible to set the stiffness of the hinge in translation (kN/m)(kN/m)(kN/m) and rotation(kNm/rad)(kNm/rad)(kNm/rad) respectively at the start of the element. “Ct-end” and “Cr-end” provide the same functionality for the end-point.

In order to make the definition of hinges accessible to optimization the input-plugs “Dofs-start” and “Dofs-end” can be used to set hinges at the beams endpoints with a list of numbers. Integers in the range from 0 to 5 signify degrees of freedom to be released in addition to those specified manually with the radio-buttons.

23KB
Beam_Joint.gh
22KB
Beam_Joint_Assemble_Disassemble.gh
25KB
Beam_Joint_Merged.gh
21KB
Beam_Joint_OnGrid.gh
26KB
Beam_Joint_PointLoad.gh
42KB
Beam_Joint_Vibrations_Axial.gh
38KB
Beam_Joint_Vibrations_Transverse.gh
26KB
Beam_Joint_With_Stiffness.gh
Fig. 3.4.1.1: Beam fixed at both supports with a fully disconnected joint at one end