Karamba3D v2
English 英文
English 英文
  • Welcome to Karamba3D
  • New in Karamba3D 2.2.0
  • See Scripting Guide
  • See Manual 1.3.3
  • 1: Introduction
    • 1.1 Installation
    • 1.2 Licenses
      • 1.2.1 Cloud Licenses
      • 1.2.2 Network Licenses
      • 1.2.3 Temporary Licenses
      • 1.2.4 Standalone Licenses
  • 2: Getting Started
    • 2 Getting Started
      • 2.1: Karamba3D Entities
      • 2.2: Setting up a Structural Analysis
        • 2.2.1: Define the Model Elements
        • 2.2.2: View the Model
        • 2.2.3: Add Supports
        • 2.2.4: Define Loads
        • 2.2.5: Choose an Algorithm
        • 2.2.6: Provide Cross Sections
        • 2.2.7: Specify Materials
        • 2.2.8: Retrieve Results
      • 2.3: Physical Units
      • 2.4: Quick Component Reference
  • 3: In Depth Component Reference
    • 3.0 Settings
      • 3.0.1 Settings
      • 3.0.2 License
    • 3.1: Model
      • 3.1.1: Assemble Model
      • 3.1.2: Disassemble Model
      • 3.1.3: Modify Model
      • 3.1.4: Connected Parts
      • 3.1.5: Activate Element
      • 3.1.6: Line to Beam
      • 3.1.7: Connectivity to Beam
      • 3.1.8: Index to Beam
      • 3.1.9: Mesh to Shell
      • 3.1.10: Modify Element
      • 3.1.11: Point-Mass
      • 3.1.12: Disassemble Element
      • 3.1.13: Make Beam-Set đź”·
      • 3.1.14: Orientate Element
      • 3.1.15: Dispatch Elements
      • 3.1.16: Select Elements
      • 3.1.17: Support
    • 3.2: Load
      • 3.2.1: General Loads
      • 3.2.2: Beam Loads
      • 3.2.3: Disassemble Mesh Load
      • 3.2.4: Prescribed displacements
    • 3.3: Cross Section
      • 3.3.1: Beam Cross Sections
      • 3.3.2: Shell Cross Sections
      • 3.3.3: Spring Cross Sections
      • 3.3.4: Disassemble Cross Section đź”·
      • 3.3.5: Eccentricity on Beam and Cross Section đź”·
      • 3.3.6: Modify Cross Section đź”·
      • 3.3.7: Cross Section Range Selector
      • 3.3.8: Cross Section Selector
      • 3.3.9: Cross Section Matcher
      • 3.3.10: Generate Cross Section Table
      • 3.3.11: Read Cross Section Table from File
    • 3.4: Joint
      • 3.4.1: Beam-Joints đź”·
      • 3.4.2: Beam-Joint Agent đź”·
      • 3.4.3: Line-Joint
    • 3.5: Material
      • 3.5.1: Material Properties
      • 3.5.2: Material Selection
      • 3.5.3: Read Material Table from File
      • 3.5.4: Disassemble Material đź”·
    • 3.6: Algorithms
      • 3.6.1: Analyze
      • 3.6.2: AnalyzeThII đź”·
      • 3.6.3: Analyze Nonlinear WIP
      • 3.6.4: Large Deformation Analysis
      • 3.6.5: Buckling Modes đź”·
      • 3.6.6: Eigen Modes
      • 3.6.7: Natural Vibrations
      • 3.6.8: Optimize Cross Section đź”·
      • 3.6.9: BESO for Beams
      • 3.6.10: BESO for Shells
      • 3.6.11: Optimize Reinforcement đź”·
      • 3.6.12: Tension/Compression Eliminator đź”·
    • 3.7: Results
      • 3.7.1: ModelView
      • 3.7.2: Deformation-Energy
      • 3.7.3: Element Query
      • 3.7.4: Nodal Displacements
      • 3.7.5: Principal Strains Approximation
      • 3.7.6: Reaction Forces đź”·
      • 3.7.7: Utilization of Elements đź”·
        • Examples
      • 3.7.8: BeamView
      • 3.7.9: Beam Displacements đź”·
      • 3.7.10: Beam Forces
      • 3.7.11: Node Forces
      • 3.7.12: ShellView
      • 3.7.13: Line Results on Shells
      • 3.7.14: Result Vectors on Shells
      • 3.7.15: Shell Forces
      • 3.7.16 Results at Shell Sections
    • 3.8: Export đź”·
      • 3.8.1: Export Model to DStV đź”·
      • 3.8.2 Json / Bson Export and Import
    • 3.9 Utilities
      • 3.9.1: Mesh Breps
      • 3.9.2: Closest Points
      • 3.9.3: Closest Points Multi-dimensional
      • 3.9.4: Cull Curves
      • 3.9.5: Detect Collisions
      • 3.9.6: Get Cells from Lines
      • 3.9.7: Line-Line Intersection
      • 3.9.8: Principal States Transformation đź”·
      • 3.9.9: Remove Duplicate Lines
      • 3.9.10: Remove Duplicate Points
      • 3.9.11: Simplify Model
      • 3.9.12: Element Felting đź”·
      • 3.9.13: Mapper đź”·
      • 3.9.14: Interpolate Shape đź”·
      • 3.9.15: Connecting Beams with Stitches đź”·
      • 3.9.16: User Iso-Lines and Stream-Lines
      • 3.9.17: Cross Section Properties
    • 3.10 Parametric UI
      • 3.10.1: View-Components
      • 3.10.2: Rendered View
  • Troubleshooting
    • 4.1: Miscellaneous Questions and Problems
      • 4.1.0: FAQ
      • 4.1.1: Installation Issues
      • 4.1.2: Purchases
      • 4.1.3: Licensing
      • 4.1.4: Runtime Errors
      • 4.1.5: Definitions and Components
      • 4.1.6: Default Program Settings
    • 4.2: Support
  • Appendix
    • A.1: Release Notes
      • Work in Progress Versions
      • Version 2.2.0 WIP
      • Version 1.3.3
      • Version 1.3.2 build 190919
      • Version 1.3.2 build 190731
      • Version 1.3.2 build 190709
      • Version 1.3.2
    • A.2: Background information
      • A.2.1: Basic Properties of Materials
      • A.2.2: Additional Information on Loads
      • A.2.3: Tips for Designing Statically Feasible Structures
      • A.2.4: Hints on Reducing Computation Time
      • A.2.5: Natural Vibrations, Eigen Modes and Buckling
      • A.2.6: Approach Used for Cross Section Optimization
    • A.3: Workflow Examples
    • A.4: Bibliography
Powered by GitBook
On this page

Was this helpful?

  1. 3: In Depth Component Reference
  2. 3.7: Results

3.7.6: Reaction Forces đź”·

Previous3.7.5: Principal Strains ApproximationNext3.7.7: Utilization of Elements đź”·

Last updated 3 years ago

Was this helpful?

The “Reaction Forces”-component gives access to the support forces and moments. It expects a model at its input-plug and returns via “RF” and “RM” a list containing reaction forces in kNkNkN and reaction moments in kNmkN mkNm as three dimensional vectors.

Specific supports can be selected via the "Pos|Inds"-input: either specify node indexes or positions. In case no input is provided, results for all supports will be output.

The input-plug “LCase” sets the load-case index for which the results shall be output. All support reactions are ordered in such a way that the indexes of the nodes they attach to form an ascending sequence. In case of locally oriented supports, reaction forces refer to the local coordinate system. “Pos” returns the position of the supports in the same order as the results. “SumRF” and “SumRM” offer the possibility to check the resultant reaction moments and forces of each load-case.

42KB
Reaction_Forces.gh
Fig. 3.7.6.1: Reaction forces and moments for two load-cases